Fort Detrick and Forest Glen Occupancy Sensors

admin November 8, 2020 Leave a reply

U.S. Army Corps of Engineers Baltimore District Frederick National Laboratory of Cancer Research (FNLCR) Occupancy Sensors, 200 kWPV, and Thermostats at Fort Detrick in Frederick, MD and Forest Glen Annex, Maryland

This project was for the installation of occupancy sensors at the Fort Detrick and Forest Glen Annex for the reduction of energy usage garrison wide through the use of occupancy sensors and modified boiler controls. The projects objectives were to reduce energy usage garrison wide through the use of occupancy sensors and modified boiler controls by providing roof mounted solar array on Building 693 in an effort to meet Federal renewable energy production goals. Crystalline solar panels installed on the southwestern facing roof via clamps and supports made for use with standing seam metal roof material.

The existing roofing system and its attachment to the existing structural roof framing system were evaluated and modified, to support the 200 kW roof mounted PV system. Meltech provided modifications to the existing roof system design and construction for the entire facility roof system, and including all necessary ancillary and incidental work necessary to maintain a watertight roof system installation while allowing for the installation of the 200 kW roof mounted PV system. We coordinated with system manufacturer to maintain existing system warranty. We followed all manufactures written recommendations and recertified the roof following construction.

We provided a roof mounted solar array on Building 693 in an effort to meet Federal renewable energy production goals. Crystalline solar panels were provided on the southwestern facing roof via clamps and supports made for use with standing seam metal roof material. The project consisted of three distinct parts: installation of occupancy sensors in 27 different buildings throughout the base and one at the Forest Glen Annex, installation of a roof mounted solar array on Building 693, and modifications to two boiler control sequences in Building 1532. Various types of occupancy sensors were utilized based on the construction and configurations of the rooms in which the lighting fixtures are going to be controlled. A blend of wall mounted, ceiling mounted, wireless, line voltage, and low voltage sensors were used. The buildings have were surveyed and the most beneficial and cost effective occupancy sensor applications were been identified. Wireless occupancy sensors were designated where wired sensors would result in significant architectural wall repair and disruption during construction. Low voltage sensors with power packs were specified where the coverage of multiple occupancy sensors to control one lighting circuit was required. Line voltage ceiling mounted sensors were provided where exposed conduit and conductors make interception of existing circuits a relatively simple matter. Wall mounted switch type occupancy sensors were provided in private office and other small rooms where existing switches can be replaced in existing outlet boxes to achieve appropriate coverage. Meltech provided modifications to existing area lighting systems consisting of fluorescent, metal halide, and incandescent, lighting to include occupancy sensors for automatic shut-off of fixtures in unoccupied spaces.

The work was completed on the following buildings:

Bldg. 243 – Bacteriology Lab
Bldg. 374 – Greenhouse Facility Lab
Bldg. 810 – Headquarters
Bldg. 1077 – CDMRP Building
Bldg. 1405 – AAFES / Post Exchange (Mini Mall) PX/Military Clothing
Bldg. 1430 – Unaccompanied Enlisted Personnel Housing
Bldg. 1529 – Community Activities Center
Bldg. 1533 – Unaccompanied Enlisted Personnel Housing Barracks
Bldg. 1534 – Unaccompanied Enlisted Personnel Housing Barracks
Bldg. 1535 – Unaccompanied Enlisted Personnel Housing Barracks
Bldg. 1536 – Unaccompanied Enlisted Personnel Housing Barracks
Bldg. 1538 – Unaccompanied Enlisted Personnel Housing Barracks
Bldg. 1540 – Certification Testing Information Assurance Training Center
Bldg. 1541 – Civilian Personnel Advisory Center
Bldg. 1545 – Administrative Offices
Bldg. 1546 – Administrative Offices
Bldg. 1674 – Procurement Division Building

 

 


Fort McNair National Defense University

admin November 8, 2020 Leave a reply

US Army Corps of Engineers National Defense University Fort McNair Marshall Hall South Plaza in Washington, DC

General Synopsis 

Meltech completed this important project for the US Army Corps of Engineers Baltimore District for the National Defense University George Marshall Hall at Fort Lesley J. McNair in Washington, DC. The project included the demolition, construction and landscaping (with environmental aspects) in the South Plaza immediately adjacent to Marshall Hall. 

In length of service as an Army post, Fort McNair ranks third and is the home of the National Defense University (NDU). Marshall hall is part of NDU and operations continued uninterrupted at the building throughout the project.

Meltech’s contract consisted of a two-part base bid. The first part of the base bid was for the demolition of concrete paving, utilities, plants, and all other demolition-related site work as shown on plans and specified. The second part of the base bid consisted of construction of an extended sidewalk and re-planting in the area west of 5th Avenue, and other related construction on the Marshall Hall South Plaza together with surrounding landscaping and storm-water management construction.

Since 90% of the buildings on Fort McNair’s 100 acres are historic buildings (built, reconstructed or remodeled prior to 1908) Meltech’s work was, as with that at Arlington National Cemetery above, subject to extremely vigilant oversight by the U.S. Army Corps of Engineers. For example, backfill materials had to be placed adjacent to all types of structures, and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials, in order to prevent wedging action or eccentric loading upon or against the structure. Compaction had to be finished by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment. Similarly the placement and treatment of bedding, graded stone, various sands and gravels and other fill materials, was strictly controlled and overseen. 

Further Details 

Divisional work associated with the base bid included:

  • Division 2 work consisted of demolition, deconstruction, dismantling, reconditioning and disposal of existing building materials, equipment and utilities as a part of new construction or renovation work, placement of select fill and topsoil layers for landfill cover systems on geosynthetic materials.
  • Division 3 work consisted of cast-in-place concrete, precast concrete wall panels with normal-weight aggregate Portland cement concrete, conventional reinforcing, and smooth surface or exposed aggregate facing 
  • Division 4 work consisted of reinforced and non-reinforced masonry.
  • Division 7 work consisted of applying sealants for normal building construction.
  • Division 10 work (Specialties) consisted of a pre-manufactured fabric covered steel shelter structure and vertical metal treillage device that allows for plant and vine support. 
  • Division 12 work consisted of miscellaneous site and street furniture and furnishings including shelters, waste and recycle receptacles, ash urns, tables, and chairs. 
  • Division 26 work consisted of general electrical work at the site, installation of photoconductive lighting control devices for use with exterior lighting systems, and installation of exterior lighting systems.
  • Division 31work consisted of earthwork activities, clearing and disposal of trees, stumps, clearing fences, buildings, and other structures and disposal of debris, trash, and materials resulting from clearing operations, clearing and grubbing.
  • Division 32 work consisted of plant material and irrigation during the establishment 
  • Period, concrete sidewalks and curbs and gutters, constructing a concrete block pavement, seeding, exterior planting, storm drainage piping systems using concrete, clay, steel, ductile iron, aluminum, polyvinyl chloride (PVC), and polyethylene (PE) pipe, sub-drainage systems for drainage of water from under the ground.

 

Meltech received an outstanding performance evaluation for the base bid work and as a result two further optional items were exercised. The first option item was for supply and installation of “Bioswale plantings”, procuring and replacing an electrical manhole ring, refinishing some existing structural elements, and addition of a ground neutral line in the panel box feeding the lights and outlets on the site. Bioswales are landscape elements designed to remove silt and pollution from surface runoff water. They consist of a swaled drainage course with gently sloped sides (less than six percent) and filled with vegetation, compost and/or riprap.  The water’s flow path, either a meandering or almost straight, with wide and shallow ditches, maximizes the time water spends in the swale, thus trapping pollutants and silt. Biological factors also contribute to the breakdown of certain pollutants. This work involved a modification to provide and install an extension of the existing irrigation sprinkler system to two new areas adjacent to the South Plaza and Bioswale. 

The second option item involved the supply and installation of exterior furniture at the site. The major scope elements of the options work were:

  1. Field investigation and measurements for the work
  2. Preconstruction/technical/product submittals and shop drawings
  3. Rigging and hoisting for the work
  4. Protection of existing surfaces
  5. Coordination with other trades
  6. Layout for the work
  7. Site demolition as necessary
  8. Third party testing of the work
  9. Provision of full-time on-site superintendent
  10. Daily cleanup of all trash and debris generated by the work
  11. Hauling and removal of all trash and debris
  12. Coordination, inspection and identification of underground utilities
  13. Furnishing and installing all erosion and sediment control systems
  14. Furnishing and installing all tree protection
  15. Furnishing and installing inlet protection
  16. Furnishing and installing a stabilized construction entrance 
  17. Furnishing and installing all concrete sidewalks, seat walls and footers
  18. Furnishing and installing all paver systems
  19. Furnishing and installing striping
  20. Furnishing and installing all plantings including shrubs  and trees
  21. Furnishing and installing all seeding
  22. All rough and fine grading
  23. Furnishing and installing all perforated under-drain piping
  24. Furnishing and installing all rip-rap and miscellaneous stone
  25. Furnishing and installing all mulch
  26. Ancillary support (permits, licenses, Davis-Bacon, certified payrolls, applic. taxes, etc.)

 

Smithsonian Institution Freer Gallery of Art and Arthur M. Sackler Gallery (Freer|Sackler)

admin November 8, 2020 Leave a reply

Smithsonian Institution Renovate Education Offices at the Freer Gallery of Art and Arthur M. Sackler Gallery (Freer|Sackler) in Washington, DC

General Synopsis 

This project was for the renovation of the Education Offices located at the Smithsonian’s Freer Gallery of Art (FGA) and Arthur M. Sackler Gallery (Freer|Sackler) in Washington, DC. 

The work included the demolition and renovation of current Education Offices located on the Second Floor Level below Grade. The demolition work included the removal of walls, doors and frames, carpeting, miscellaneous built-ins and finishes, lighting, mechanical diffuser and some MEP related equipment. The new work included the gypsum board and metal stud partitions, glazed aluminum framing and doors, a translucent feature wall, new carpeting, ceiling and lighting. The sprinkler, fire alarm, speaker and the mechanical systems were modified to work with the current layout. All the main lines and control systems remained. 

This work was completed in a fully occupied building. The affected areas were screened off and all construction activities were staged in a manner to be the least disruptive to the adjacent spaces. All egress paths remained open and in use for the building occupants. 

Further Details 

This project involved the following disciplines: 

Division 2 – Existing Conditions
Division 6 – Woods, Plastics and Composites
Division 7 – Thermal and Moisture Protection
Division 8 – Openings
Division 9 – Finishes
Division 11 – Equipment
Division 21- Fire Suppression
Division 23 – Heating, Ventilating and Air Conditioning
Division 26 – Electrical
Division 28 – Electronic Safety and Security

One project modification was issued for the Sacklers Archives Cold Storage renovation. The work was for the demolition to include the evacuation of the refrigerant from the cold storage equipment and compressors. Complete the disconnections and make safe dehumidifier and fan coil unit and remove equipment from site. Disconnect existing controls and make safe. The new work included the installation of a new rigid supply and return ductwork, 12×12 fire damper with access door, supply and return registers, fire stop penetrations and the insulation on new ductwork.